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The transition from 5G to 6G is closely tied to a shift from connectivity-centric infrastructures to 
AI-native radio access networks. In these networks, machine learning is deeply integrated into the 
architecture and operation of the wireless access segment, and learning-based functions span from 
spectrum sensing and physical-layer signal processing to near real-time and non-real-time control 
applications running in cloud-native controllers. This paper surveys AI/ML-based technologies for 
wireless access networks, focusing on recent work in AI radio access networks (AI-RAN), open radio 
access networks (O-RAN), RAN intelligent controllers (RICs), real-time dApps/xApps, digital twins, 
and machine learning-based physical-layer receivers. Building on data and model assets such as 
DeepMIMO for channel modeling, LibIQ for real-time spectrum analytics, and O-RAN-driven digital 
twin platforms, we review online learning and reinforcement learning approaches for energy-
efficient resource allocation, mobilityand spectrum management as well as spiking neural network-
based receivers for low-power physical-layer processing. We also highlight the roles of explainable 
and generative AI in making RAN intelligence trustworthy, sustainable, and easier to operate. Finally, 
we identify future directions for designing AI-native wireless access networks.
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I.	서론

5세대(5G: 5th Generation) 이동통신의 상용화 이후 

무선접속망(RAN: Radio Access Network)은 초고속‧

초저지연‧초연결을 달성했으나, 6세대(6G: 6th 

Generation) 시대에는 단순한 접속 인프라를 넘어 네

트워크 자체가 학습하고 스스로 동작을 조정하는 

지능형 인프라가 요구되고 있다. 이러한 흐름 속에

서 인공지능(AI)과 머신러닝(ML: Machine Learning)을 

기지국 기능 전반에 깊게 결합한 AI 기반 무선접속

망(AI-RAN: AI Radio Access Network) 개념이 핵심 비

전으로 제시된다[1].

한편, 개방형 무선접속망(O-RAN: Open Radio 	

Access Network) 표준은 기지국 기능을 개방형 인터

페이스를 통해 모듈화하고, O-RU, O-DU, O-CU로 

기능을 분리하여 여러 벤더의 장비와 소프트웨어가 

공존하는 생태계를 지향한다. 특히 무선접속망 지

능형 제어기(RIC: RAN Intelligent Controller)에 탑재되

는 근실시간 응용(xApp: x Application)과 비실시간 응

용(rApp: r Application), 그리고 데이터 경로와 더 밀접

한 다이렉트 응용(dApp: direct Application)은 AI/ML 

알고리즘을 네트워크 제어 루프 내부로 끌어들이는 

중요한 수단이다[2–4,9].

또한, 실제 환경을 반영한 채널 데이터셋과 스펙

트럼 데이터셋, 디지털 트윈(DT: Digital Twin) 기반 

시뮬레이터의 발전으로, RAN 제어 문제를 데이터 

중심으로 재정의하려는 시도가 빠르게 확산되고 

있다. DeepMIMO와 LibIQ 같은 데이터‧모델 자

산 및 O-RAN 디지털 트윈 플랫폼은 AI-RAN 연구

를 뒷받침하는 대표적인 인프라로 활용되고 있다

[4,7,8].

본고에서는 최신 연구를 바탕으로, 6G 지향 무선

접속망을 위한 AI/ML 기술을 다음과 같은 관점에

서 정리한다. 

• 6G AI-RAN의 비전과 O-RAN 아키텍처

• �채널‧스펙트럼‧디지털 트윈 데이터 및 모델 

자산

• �dApp/xApp/rApp 기반 실시간‧장기 RAN  

제어

• �디지털 트윈 및 통합 센싱‧통신(ISAC: Integrated 

Sensing And Communications) 응용

• �물리계층(PHY: Physical Layer) 수신기 차원의 

AI/ML 적용과 에너지 효율

• �설명 가능한 인공지능(XAI: eXplainable Artificial 

Intelligence), 생성형 AI 및 대규모 언어모델

(LLM: Large Language Model) 기반 RAN 지능화

II.	�6G 지향 AI-RAN 개념과 O-RAN 진화

1. 6G 무선접속망의 요구 조건

6G에서는 5G 대비 크게 향상된 용량과 데이터

율, 극저지연, 고신뢰성, 초고밀도 단말 접속, 그리

고 디지털 트윈 서비스‧몰입형 확장현실 등 새로

운 응용을 동시에 지원해야 한다[1]. 이러한 요구는 

다음과 같은 특성의 무선접속망 설계를 요구한다.

첫째, 밀리미터파(mmWave: millimeter Wave) 및 테

라헤르츠(THz: Terahertz) 대역, 대규모 다중입출력

(MIMO: Multiple-Input Multiple-Outputy), 지능형 반

사표면(IRS: Intelligent Reflecting Surface), 비직교 다중

접속(NOMA: Non-Orthogonal Multiple Access) 등 다양

한 무선 기술을 통합적으로 운용해야 한다[1,7]. 둘

째, 마이크로셀‧피코셀뿐만 아니라 비지상 네트워

크(NTN: Non-Terrestrial Network)까지 포함하는 초고

밀도‧이기종 셀 구조에서 간섭과 핸드오버를 정

교하게 관리해야 한다. 셋째, 초신뢰‧초저지연 통

신(URLLC: Ultra-Reliable and Low Latency Communi-

cations), 고신뢰 대용량 통신(eMBB: enhanced Mobile 

Broadband), 초대규모 사물통신(mMTC: massive Ma-
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결국 AI-RAN 설계의 핵심은 어떤 위치에 어떤 

모델을 배치하고, 어떤 제어 루프를 맡길 것인가라

는 문제이며, 이때 O-RAN 아키텍처가 AI 모듈을 

삽입할 수 있는 구조적 기반을 제공한다. 

3. O-RAN 아키텍처와 RIC의 역할

O-RAN은 RAN 기능을 분리하고 개방형 인터페

이스를 정의함으로써 AI/ML 기능을 소프트웨어 컴

포넌트 형태로 유연하게 삽입할 수 있는 환경을 제

공한다[3,4].

O-RU, O-DU, O-CU로의 기능 분리는 하드웨

어와 소프트웨어, 그리고 기능 블록 간 결합도를 

낮춰 특정 모듈만 교체하거나 확장하기 쉽게 만든

다. 비실시간 영역에는 비실시간 RIC(Non-RT RIC)

가 위치하며, 비실시간 rApp이 장기적인 데이터 분

석, 정책 생성, 모델 학습‧배포를 담당하고 관리 인

터페이스(O1)를 통해 O-RAN 구성 요소를 제어한

다[3]. 근실시간 영역에는 근실시간 RIC(Near-RT 

RIC)가 위치하고, 근실시간 xApp이 수 밀리초에서 1

초 수준의 제어를 담당하며, E2 인터페이스를 통해 

O-DU/O-CU와 상호작용을 하면서 스케줄링, 전

력 제어, 간섭 조정 등 핵심 기능을 수행한다[2,4].

최근에는 dApp 개념이 도입되어, O-DU/O-CU 

인근 혹은 데이터 경로 주변의 컴퓨팅 자원에서 실

행되며 PHY 및 매체접속제어 계층과 더 직접적으

로 상호작용하는 초경량 마이크로서비스 형태의 AI 

모듈이 제안되고 있다. dApp은 수백 마이크로초에

서 1밀리초 수준의 응답 시간이 필요한 스펙트럼 분

류, 간섭 회피, 빠른 링크 적응 등에 적합한 구조를 

제공한다[9].

정리하면 O-RAN은 AI-RAN 비전을 구현하기 위

한 플러그인형 AI 제어 슬롯(xApp/rApp/dApp)을 네

트워크 구조에 내장한 형태로 볼 수 있으며, 이를 통

chine-Type Communications) 등 다양한 서비스별 품질 

요구(QoS: Quality of Service; QoE: Quality of Experience)

를 만족시키기 위해, 슬라이스 단위의 세밀한 자원 

관리와 서비스 수준 합의(SLA: Service Level Agreement) 

보장이 필요하다.

이처럼 상태 공간이 방대하고 시간‧공간적으

로 급변하는 환경에서는, 고정 규칙 기반 설계와 수

동 튜닝만으로는 효율적인 운용이 어렵다. 관측 데

이터로부터 경험을 축적하고 정책을 지속적으로 학

습‧갱신하는 AI/ML 기반 제어가 자연스러운 해결

책으로 부상하는 이유가 여기에 있다[1].

2. AI-RAN: 학습하는 무선접속망

AI-RAN은 RAN 내부의 다양한 기능, 예를 들어 채

널 추정과 빔포밍, 스케줄링, 핸드오버, 슬라이싱, 에

너지 관리 등 전 영역에 AI/ML을 단계적으로 주입

하여, 사람이 일일이 규칙을 설계하던 구조를 학습 

기반 자율 제어 시스템으로 전환하는 개념이다[1].

이를 위해 AI-RAN은 다음과 같은 계층 구조를 

가질 수 있다.

• �관측 계층: 기지국과 단말에서 수집되는 방대

한 키 성능 지표(KPM: Key Performance Metric), 

채널 상태 정보(CSI: Channel State Information), 

로그 데이터를 통합‧정제하여 AI 학습에 적

합한 형태로 제공한다.

• �지능 계층: 예측‧분류‧강화학습(RL: Rein-

forcement Learning) 모델을 활용하여 자원 할당, 

셀 on/off, 핸드오버 등 다양한 의사결정 문제

를 학습한다. 

• �실행 계층: 학습된 정책을 xApp/dApp/rApp 

형태로 RIC 및 O-DU/O-CU에 배치하고, 초

저지연‧근실시간‧장기 제어를 계층적으로 

수행한다.



4 전자통신동향분석 제41권 제1호 2026년 2월

해 다양한 AI/ML 알고리즘을 RAN 내부로 유연하

게 통합할 수 있다[1,3].

III.	�무선접속망 AI/ML을 위한 데이터·	
모델 자산

AI/ML 기반 RAN 제어가 실용화되기 위해서

는, 다양한 환경을 반영한 데이터와 그 데이터를 기

반으로 동작할 수 있는 모델‧플랫폼이 충분히 마

련되어야 한다. 대표적으로 DeepMIMO, LibIQ, 

O-RAN 디지털 트윈 플랫폼 등이 이러한 역할을 수

행하고 있다.

1. 채널 데이터셋: DeepMIMO

DeepMIMO는 레이 트레이싱 기반 시뮬레이션

으로 생성된 mmWave 및 대규모 MIMO 채널 데

이터를 딥러닝 학습에 적합한 형태로 제공하는 범

용 데이터셋이다[7]. 이 데이터셋의 특징은 다음과 

같다.

첫째, 실제 환경을 기반으로 한 3차원 모델 위에

서 레이 트레이싱을 수행하여 현실감 있는 가시선 

및 비가시선 채널을 생성한다. 둘째, 기지국(BS: Base 

Station)과 단말(UE: User Equipment)의 위치, 안테나 

수, 빔 형성 방식 등 여러 파라미터를 사용자가 설정

할 수 있어 다양한 시나리오를 손쉽게 구성할 수 있

다. 셋째, 빔 선택과 빔 추정, 채널 예측, 위치 추정 

등 여러 AI 문제를 동일한 데이터셋에서 다룰 수 있

도록 설계되어, 연구자들이 공통 기반 위에서 알고

리즘을 비교‧평가하기 용이하다.

따라서 DeepMIMO는 mmWave‧대규모 MIMO 

환경에서의 AI 모델 연구를 위한 공용 기초 데이터

셋으로 활용 가능하며, 향후 6G용 빔포밍‧슬라이

스 설계 등에도 중요한 역할을 할 것으로 기대된다.

2. �실시간 I/Q 데이터: LibIQ와 스펙트럼  
인지

LibIQ는 RAN에서 관측되는 복소 I/Q 샘플을 수

집‧가공하여, 실시간 스펙트럼 분류와 간섭 탐지 모

델 학습에 활용할 수 있도록 만든 라이브러리이다

[8]. 다양한 변조 방식과 간섭 패턴, 신호대잡음비 등

에서 I/Q 시퀀스를 수집하고, 이를 합성곱 신경망 등 

딥러닝 모델 학습에 사용할 수 있도록 구조화한다.

학습된 모델을 dApp 형태로 O-RU/O-DU 근처

에 배치하면, 스펙트럼 상태를 빠르게 분류하고 간

섭이 의심되는 상황을 신속하게 감지할 수 있다

[8,9]. 이 구조는 스펙트럼 센싱, AI 추론, RAN 파라

미터 조정을 하나의 짧은 폐루프로 묶어 동작하게 

하며, 동적 스펙트럼 공유나 간섭 회피와 같은 응용

에 적합하다.

3. O-RAN 디지털 트윈 기반 데이터

O-RAN 환경에서 에너지 절감과 지연 최적화를 

연구하기 위해, 디지털 트윈 기반 플랫폼을 구성한 

사례도 제시된다[4]. 상용급 RAN 시뮬레이터를 사

용하여 실제 O-RAN과 유사한 환경을 가상 공간에 

구현하고, PRB(Physical Resource Block) 사용률, 셀‧단

말별 스루풋, 변조 및 부호화 방식(MCS: Modulation 

and Coding Scheme), RSRP/RSRQ, 지연 등 다양한 

KPM을 비실시간 RIC로 수집하여 시계열 데이터베

이스에 저장한다.

이 플랫폼에서는 장기 메모리를 가진 순환신경망 

계열 모델을 활용한 LSTM 기반 트래픽 예측 rApp

과 에너지 절감 rApp을 디지털 트윈상에서 먼저 시

험하고, 충분히 검증된 정책을 실제 테스트베드에 

적용하는 방식으로 에너지‧지연 트레이드오프를 

분석한다[4]. 이러한 디지털 트윈 데이터는 실환경
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서 실행되며 사용자 데이터 또는 I/Q 샘플에 직접 

접근할 수 있고, 마이크로서비스 구조로 설계되어 

특정 기능을 독립적으로 배포‧롤백할 수 있어 운

영 유연성이 높다.

실험 결과에 따르면 dApp 기반 제어는 사용자 패

킷 처리 시간대와 유사한 마이크로초~밀리초 수준

에서 동작할 수 있어, 근실시간 RIC 기반 xApp보

다 더 빠른 응답이 가능하다[9]. LibIQ 기반 스펙트

럼 분류 모델을 dApp으로 구현하면, dApp이 스펙트

럼 상태를 분류하고 그 결과를 O-DU 스케줄러나 

xApp에 피드백하여 간섭 회피 전략을 즉각 적용하

는 구조를 만들 수 있다[8,9].

2. �온라인 학습 기반 자원·에너지 최적화: 
SORA

SORA는 O-RAN 환경에서 에너지 효율을 높이

기 위해 자원 할당 문제를 온라인 학습 관점에서 다

룬 연구이다[10]. 사용자별 전력‧PRB 할당을 컨

텍스트가 있는 밴딧 문제로 보고, 각 사용자 상태 

(채널, 트래픽 등)를 컨텍스트로 사용하여 Thompson 

Sampling 기반 알고리즘을 통해 사전 지식 없이도 

점진적으로 좋은 자원 할당 정책을 학습한다.

과 매우 유사하지만 실험 실패에 따른 리스크가 없

는 공간을 제공하여, AI 정책을 더욱 적극적으로 설

계하고 튜닝할 수 있게 한다.

4. 데이터·모델 자산 비교

표 1은 앞에서 설명한 데이터‧모델 자산을 용도 

관점에서 비교한 것이다.

IV.	AI/ML 기반 무선접속망 제어 기술

데이터와 플랫폼이 준비되면, 그 위에서 어떤 제

어 알고리즘을 설계할 것인가가 핵심 질문이 된다. 

최근 연구들은 dApp/xApp/rApp 계층 구조를 활용

하여 자원 할당, 에너지 절감, 이동성 관리 등을 해

결하는 다양한 접근을 제시한다.

1. dApp/xApp 기반 실시간 제어

dAPPs 관련 연구에서는 기존 O-RAN 구조에 

dApp 계층을 추가하여, PHY 및 매체접속제어 계층

과 더욱 밀접하게 연결된 초저지연 제어 루프를 구

현한다[9]. dApp은 O-DU 인근의 컴퓨팅 리소스에

표 1  무선접속망 AI/ML 데이터·모델 자산 비교[4,7,8]

자산/플랫폼 주요 목적 데이터 유형 환경·플랫폼 특징

DeepMIMO
빔포밍, 채널·위치 
예측

채널 계수, 위치, 안테나 
구성

레이 트레이싱 기반 
mmWave/대규모 MIMO

파라미터화된 대규모 채널 데
이터 생성, 다양한 시나리오 
구성 용이

LibIQ
스펙트럼 분류, 
간섭 탐지

I/Q 시퀀스, 레이블 
(신호대잡음비, 변조 등)

O-RAN dApp 환경
합성곱 신경망 학습에 최적화
된 구조, 마이크로초~밀리초 
수준 폐루프 스펙트럼 인지

O-RAN DT 
에너지 절감 플랫폼

셀 on/off와 전력 
제어를 통한 에너지 
효율 최적화

셀·단말 KPM, 전력 
소비, 트래픽 시계열

상용 RAN 시뮬레이터, 
실제 O-RAN 테스트베드

LSTM rApp 기반 트래픽 
예측, 비실시간 RIC 연계, 
O1 인터페이스 활용

5G DT O-RAN 
드론 레이싱 플랫폼

저지연 스펙트럼 
스케줄링

왕복 지연(RTD: Round-
Trip Delay), 채널, 트래픽, 
드론 궤적

무선 채널 에뮬레이터, 
로봇 시뮬레이터, O-RAN

드론 경로·지연 조건을 
통합한 디지털 트윈, 
xApp 평가에 적합
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이 방식은 계산 복잡도가 상대적으로 낮고, 환경 

모델(정확한 채널 모델 등)에 대한 가정이 약하다는 장

점이 있다. 시뮬레이션 결과, SORA는 복잡한 최적화 

기반 방식과 비교해도 경쟁력 있는 에너지 효율을 

보이면서 구현 난이도를 낮출 수 있음을 보인다[10].

3. �디지털 트윈을 활용한 에너지·지연 
제어

디지털 트윈을 활용하여 에너지 절감 및 지연 성

능을 최적화하는 사례도 있다. O-RAN 디지털 트윈 

연구에서는 coverage 셀과 capacity 셀로 구성된 환경

에서, LSTM 기반 트래픽 예측 rApp이 수요를 예측

하고 에너지 절감 rApp이 capacity 셀 on/off를 결정

하여 에너지 절감을 도모한다[4]. 드론 레이싱 시나

리오에서는 드론의 경로와 속도, 무선 채널 상태를 

디지털 트윈에서 재현하고, RTD를 최소화하는 스

펙트럼 스케줄링 xApp을 시험하여 근실시간 RIC가 

지연 요구를 만족하는 자원 배분을 수행할 수 있음

을 보인다[4].

이러한 방식은 디지털 트윈에서 위험 없이 정책

을 충분히 검증한 뒤, 실제 O-RAN에 적용하는 운

영 프로세스를 가능하게 함으로써, AI 기반 제어 도

입에 따른 리스크를 줄이는 효과가 있다.

4. 이동성·스펙트럼 관리

AI-RAN 튜토리얼에서는 이동성 관리와 스펙트

럼 관리 역시 AI/ML의 핵심 적용 분야로 제시된다

[1]. 혼잡 셀과 비혼잡 셀 사이의 단말 분배를 강화

학습 문제로 모델링하고, 장기적인 QoE와 부하 균

형을 동시에 고려하는 정책을 탐색하는 연구가 보

고된다. 또한 NOMA, IRS, mmWave/THz를 활용하

는 복잡한 스펙트럼 공유 환경에서, 학습 기반 간섭 

관리와 채널 예측을 활용해 자원 사용 효율을 높이

는 방안이 제안된다[1,7].

실제 O-RAN 구조에서는 이러한 알고리즘을 

xApp/rApp 형태로 구현하여, 핸드오버 파라미터, 

스케줄링 가중치, 빔 선택 정책 등을 동적으로 조정

할 수 있다.

5. AI 기반 RAN 제어 기술 분류

표 2는 RAN 제어 분야를 기능별로 정리한 것

이다.

V.	 �디지털 트윈 및 ISAC 기반 지능형 RAN

디지털 트윈과 ISAC는 6G에서 자주 언급되는 키

표 2  AI/ML 기반 무선접속망 제어 기술 분류[1,3,4,7–10]

범주 대표 사례 주요 학습 기법 기대 효과

자원·스펙트럼 관리
AI-RAN 자원 관리, DeepMIMO 
기반 빔포밍

딥러닝, 강화학습
스펙트럼 효율 향상, 사용자 QoE 개선, 간섭 
완화

에너지 절감
SORA, O-RAN 디지털 트윈 기반 
에너지 절감 rApp

Thompson sampling, LSTM 
기반 예측, 정책 최적화

셀 on/off, 전력 제어를 통한 에너지 및 운영비
용(OPEX: Operational Expenditure) 절감

초저지연 제어 dApp·LibIQ 기반 스펙트럼 제어
합성곱 신경망, 마이크로서비
스 기반 배포

마이크로초~밀리초 폐루프 제어, 간섭 회피, 
링크 안정성 향상

이동성·핸드오버 AI-RAN 이동성 관리 강화학습, 예측 분석 핸드오버 실패 및 핑퐁 감소, 부하 균형

DT·ISAC 제어
O-RAN 디지털 트윈, 로보틱 ISAC 
디지털 트윈

LSTM, 대체 모델(Surrogate 
Model), 생성형 모델

에너지·지연·센싱 성능 동시 최적화
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워드로, AI-RAN과도 밀접하게 연결된다. 디지털 트

윈은 현실 세계의 네트워크 상태를 가상 공간에 투

영하는 역할을 하고, ISAC는 통신과 센싱을 통합함

으로써 네트워크가 주변 환경을 더욱 정교하게 인

지할 수 있게 한다.

1. 6G 디지털 트윈과 생성형 모델

생성형 AI 튜토리얼 논문에서는 6G 디지털 트윈

을 구현하기 위한 도구로 생성형 적대 신경망(GAN: 

Generative Adversarial Network), 변분 오토인코더(VAE: 

Variational AutoEncoder), 흐름 기반 모델(Flow-Based 

Model), 확산(Diffusion) 모델 등을 언급한다[6]. 이들 

모델은 다음과 같은 방식으로 활용될 수 있다.

첫째, 불규칙한 채널 상태나 트래픽 패턴을 데이

터로부터 학습한 뒤 유사한 조건을 인공적으로 생

성하여 테스트 시나리오를 확장할 수 있다. 둘째, 드

문 이벤트(장애, 극단적인 혼잡 상태 등)를 합성해 실

제로 자주 발생하지 않는 상황에 대해서도 제어 정

책을 미리 훈련할 수 있다. 셋째, 디지털 트윈 환경

에서 다양한 가상 하루를 빠르게 생성하여 정책의 

장기간 성능을 평가할 수 있다.

이와 같이 생성형 모델은 디지털 트윈의 데이터 

엔진 역할을 하며, 부족한 실측 데이터를 보완하는 

데 기여한다[6].

2. O-RAN 디지털 트윈 사례

O-RAN과 디지털 트윈을 결합한 연구에서는 다

양한 사례가 소개된다[4]. 에너지 절감 시나리오에

서는 coverage 셀과 capacity 셀 구조를 디지털 트윈

에 구성하고, rApp이 수집한 트래픽‧KPM 데이터

를 기반으로 LSTM 모델을 학습해 capacity 셀의 

on/off 정책을 최적화한다. 드론 레이싱 시나리오

에서는 로봇 시뮬레이터를 활용해 3차원 환경과 

드론 궤적을 모델링하고, 무선 채널 에뮬레이터에

서 채널‧트래픽을 합성하여 xApp이 지연 요구를 

만족하도록 스펙트럼을 배분하는 전략을 실험한

다[4].

이러한 사례는 디지털 트윈을 실험실에 존재하는 

또 하나의 RAN으로 활용하는 방법을 보여준다. 운

영자는 디지털 트윈에서 다양한 xApp/rApp 조합을 

시험한 뒤, 성능과 안정성을 확인하고 실제 네트워

크에 적용할 수 있다.

3. 로보틱 ISAC 디지털 트윈

로보틱 ISAC 디지털 트윈 연구에서는 통신과 센

싱을 동시에 수행하는 로봇 시스템에서 디지털 트

윈을 어떻게 활용할 수 있는지 보여준다[5]. RGB-D 

카메라로부터 얻은 3차원 포인트 클라우드를 기반

으로 환경을 재구성하고, 이 위에서 레이 트레이싱

을 수행해 채널을 추정한다. 로봇의 이동, 장애물 위

치, 반사 특성 등 환경 변화를 실시간으로 반영하며 

채널 모델도 함께 갱신한다.

또한, LLM 기반 음성 인터페이스를 도입하여, 사

용자가 자연어로 로봇과 디지털 트윈의 동작을 제

어할 수 있는 데모를 구현한다[5]. 이러한 접근은 향

후 RAN이 차량, 로봇, 드론 등과 결합할 때 통신 인

프라가 환경 인지와 제어 루프에도 직접 참여할 수 

있음을 시사한다.

4. 전파 모델링 가속을 위한 AI

AI 기반 기민 전파 모델링 연구에서는 디지털 트

윈에서 전파 모델을 빠르게 갱신하기 위한 방법을 

제안한다[12]. 계산량이 큰 레이 트레이싱 결과 일

부를 학습 데이터로 사용하여 신경망 기반 대체 모
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델을 학습한 뒤, 나머지 위치의 채널을 빠르게 예측

하는 방식이다. 환경 변화가 발생하면 제한된 수의 

레이 트레이싱 샘플로 대체 모델을 업데이트하여 

디지털 트윈을 민첩하게 유지할 수 있다.

이와 같은 접근은 AI-RAN에서 채널 예측, 빔포

밍, 자원 최적화를 실시간에 가깝게 수행할 수 있는 

기반을 마련한다.

VI.	�물리계층 AI/ML: 신경망 및 스파이킹 
수신기

AI/ML은 상위 계층 제어뿐만 아니라 PHY에도 깊

이 들어오고 있다. 특히 뉴로모픽 하드웨어와 결합 

가능한 스파이킹 신경망(SNN: Spiking Neural Network) 

수신기는 에너지 효율 측면에서 많은 관심을 받고 

있다.

1. SpikingRx: 스파이킹 신경망 수신기

SpikingRx 연구는 기존 딥러닝 기반 수신기(Neu-

ralRx)를 스파이킹 신경망으로 변환하여 에너지 소

비를 크게 줄이면서도 성능을 유지하는 방법을 제

안한다[11]. 기존 인공신경망(ANN: Artificial Neural 

Network)으로 설계된 수신기를 기반으로 스파이크 

기반 표현으로 변환하는 절차를 제시하고, 양자화 

인지 학습과 스파이크 코딩을 결합해 낮은 정밀도

의 정수 연산으로도 충분한 성능을 확보한다.

이 수신기의 블록 오류율(BLER: Block Error Rate)

은 채널에 대한 완전한 지식(Genie-aided)을 가정한 

하한선에 근접하면서도, 뉴로모픽 하드웨어 상에서 

높은 에너지 효율을 달성하는 것으로 보고된다[11]. 

이러한 특성은 향후 O-RU나 단말 내 베이스밴드 

처리에 저전력 AI 수신기를 탑재하는 현실적인 방

향을 제시한다.

2. 채널 데이터셋과 PHY-AI 결합

DeepMIMO와 같은 채널 데이터셋, 그리고 AI 기

반 전파 모델링을 활용한 디지털 트윈 기반 채널 생

성 기법은 SpikingRx와 같은 수신기를 학습‧검증하

는 환경을 제공한다[7,11,12]. DeepMIMO를 활용하

면 다양한 빔포밍 조건과 채널 상황에서 NeuralRx/

SpikingRx를 사전 학습하고, 특정 환경에 맞게 미세 

조정할 수 있다[7,11]. 또한, 대체 모델 기반 전파 모

델링을 사용하는 디지털 트윈에서는 위치‧환경 변

화에 따라 채널이 동적으로 생성되므로, 실제 환경

과 유사한 조건에서 수신기 성능을 장기간 평가할 

수 있다[12].

이와 같이 PHY-AI 모델과 채널 데이터/모델 자

산이 결합되면, 상위 계층 AI-RAN 제어와 더불어 

PHY까지 포함하는 종단간 지능형 무선 링크 설계

가 가능해진다.

VII.	XAI를 통한 신뢰 가능한 AI-RAN

AI가 네트워크 제어에 깊게 관여할수록 왜 이런 

결정을 내렸는가를 설명하는 능력이 중요해진다. 

특히 O-RAN과 같이 여러 벤더의 xApp/rApp이 공

존하는 환경에서는 설명 가능성과 검증 가능성이 

핵심 요구가 된다.

1. XAI의 필요성

XAI 튜토리얼에서는 6G O-RAN에서 XAI가 필요

한 이유를 운영‧튜닝, 규제‧책임성, MLOps 관점

에서 정리한다[2]. 운영자는 xApp/rApp이 내리는 결

정을 이해해야 적절히 파라미터를 조정하고 문제 상

황에서 원인을 진단할 수 있으며, 공공 안전과 산업 

제어, 의료 등 분야에서는 AI 의사결정을 설명할 수 
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있어야 규제와 책임 소재를 명확히 할 수 있다. 또한, 

모델 드리프트나 편향을 탐지하고 적절한 재학습‧

배포 전략을 수립하기 위해, 모델의 행동이 어떤 특

징에 의해 좌우되는지 파악할 필요가 있다[2].

2. O-RAN 아키텍처와 XAI 통합

해당 튜토리얼은 LIME, SHAP, integrated gradients 

등 널리 알려진 XAI 기법을 O-RAN에 통합하는 방

법을 제안한다[2]. 비실시간 RIC에 XAI 모듈을 두

고 xApp/rApp의 입력‧출력과 KPM 변화를 수집해 

정책이 어떤 입력 패턴에 민감한지 분석하며, Global 

설명(정책 전반의 일반적 행동 양상)과 Local 설명(특정 

단말‧셀‧시간 구간에서의 상세한 결정 근거)을 병행

해 대시보드를 구성하는 구조를 예시로 제시한다.

이러한 구조는 AI-RAN의 블랙박스를 투명하게 

만들 수 있는 도구 상자에 해당하며, 향후 상용망 적

용 시 필수 기능으로 자리 잡을 가능성이 크다. 또

한, XAI 지표를 이용해 편향이나 이상 행동이 감지

되면 rApp이 자동으로 재학습‧정책 롤백을 수행하

는 MLOps 시나리오도 구상할 수 있다[2,3].

VIII.	생성형 AI 기반 RAN 지능화

생성형 AI와 LLM은 무선접속망에서도 새로운 

활용 가능성을 열어가고 있다[6].

1. 데이터 증강과 시나리오 생성

GAN, VAE, 확산 모델 등은 희귀한 상황이나 복

잡한 트래픽 패턴을 모사하는 데 유용하다. 평상시

에는 잘 관찰되지 않는 장애 상황을 합성해 RL 기반 

제어 정책을 사전에 훈련할 수 있고, 트래픽 부하와 

채널 환경, 사용자 이동 패턴을 조금씩 바꿔가며 다

양한 가상 시나리오를 생성하여 xApp/rApp의 일반

화 성능을 평가할 수 있다. 디지털 트윈과 결합하면 

현실에서는 실험하기 부담스러운 극단 조건을 대량

으로 시험하는 것도 가능하다[4,6,7].

2. LLM 기반 운영자 인터페이스 및 자동화

LLM은 네트워크 운영과 설계 과정에도 자연스

럽게 스며들 수 있다[5,6]. 운영자는 자연어 질의를 

통해 특정 셀의 핸드오버 실패율이 높은 이유를 요

약해 달라고 요청하거나, 특정 기간의 KPM 변화를 

설명할 것을 요구할 수 있다. LLM은 xApp/rApp 설

정 템플릿, 테스트 시나리오, KPI 대시보드 구성을 

자동 제안함으로써 설계‧운영 업무를 보조할 수 

있다. 로보틱 ISAC 디지털 트윈 사례처럼 음성 인터

페이스를 통해 사람–네트워크–로봇의 상호작용을 

자연어 기반으로 구성하는 것도 가능하다[5].

이러한 흐름은 AI가 AI를 관리하는 방향으로 진

화할 수 있으며, XAI와 결합하면 설명 가능한 자동

화 어시스턴트로 발전할 여지가 있다[2,6].

IX.	결론

본고에서는 AI-RAN, O-RAN, 디지털 트윈, 

PHY-AI, XAI, 생성형 AI와 관련된 최신 연구를 바

탕으로, 6G 지향 무선접속망을 위한 AI/ML 기술 

동향을 정리하였다. 무선접속망을 위한 AI/ML 기

술은 개별 알고리즘이나 특정 계층에 국한되지 않

고, 데이터–모델–플랫폼–운영–설명성을 아우르는 

전체 생태계를 포괄하는 방향으로 진화하고 있다. 

이러한 관점에서, AI-RAN과 O-RAN의 결합, 데

이터‧모델 자산의 체계화, 온라인 학습과 지속가

능성, PHY-AI와 뉴로모픽 수신기, 디지털 트윈‧	

ISAC‧생성형 AI의 융합, XAI 및 LLM 기반 운영 자
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동화는 향후 6G RAN 연구 및 실증 프로젝트의 핵

심 축이 될 것으로 전망된다.

본고에서 정리한 내용은 향후 6G 무선접속망 연

구와 실증 사업에서 어떤 데이터‧플랫폼‧알고리

즘을 우선적으로 준비해야 할지 전략을 세우는 데 

기초 자료로 활용될 수 있을 것으로 기대한다.

AI-RAN  무선접속망의 자원관리·핸드오버·에너지 제어 등을 인
공지능·머신러닝으로 수행하여, 망이 스스로 상태를 학습하고 최
적화하도록 설계한 차세대 지능형 RAN 구조

O-RAN  기지국 기능을 O-RU·O-DU·O-CU로 분리하고 개방
형 인터페이스와 RIC를 통해 여러 벤더 장비와 AI 기반 제어 응
용을 유연하게 수용하는 개방형 무선접속망 아키텍처

디지털 트윈 무선네트워크  실제 무선망의 구성·채널·트래픽 상
태를 가상 공간에 복제하여, 에너지 절감이나 지연 최적화 같은 제
어 알고리즘을 안전하게 시험·검증할 수 있는 무선 네트워크 기술

용어해설
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